Object Oriented Database Concepts

CHAPTER TWO
OBJECT ORIENTED DATABASE CONCEPTS

2.1 Overview

This chapter explains OODB SYSTEMS perspectives; also it explains the two architecture of OODBMS, client-server architecture, and the storage of methods. Also it explains some concepts such that integrity, concurrency control, Recovery, transactions, persistence, and security.
2.2 OODB SYSTEMS Perspectives

Database systems are primaries concerned with the creation and maintenance of large, long-lived collections of data. Modern database systems are characterized by their support of the following features:

· A data model: A particular way of describing data, relationships between data, and constraints on the data.

· Data persistence: the ability for data to outlive the execution of a program, and possibly the lifetime of the program itself.

· Data sharing: The ability for multiple applications (or instances of the same one) to access common data, possibly at the same time.

· Reliability: The assurance that the data in the database is protected from hardware and software failures.

· Scalability: The ability to operate on large amount of data in simple ways.

· Security and integrity: The protection of the data against unauthorized access, and the assurance that the data conforms to specified correctness and consistency rules.

· Distribution: The ability to physically distribute a logically interrelated collection of shared data over a computer network, preferably making the distribution transparent to the user.

In contrast, traditional programming languages provide constructs for procedural control and for data and functional abstraction, but lack built-in support for many of the above database features. While each are useful in their respective domains, there exist an increasing number of applications that require functionality from both database system and programming languages. Such applications are characterized by their need to store and retrieve large amounts of shared, structured data.

In the last two decades, there has been considerable effort invested in developing systems that integrate the concepts from these two domains. However, the two domains have slightly different perspectives that have to be considered and the differences addressed [8].

Perhaps two of the most important concerns from the programmers perspective are performance and ease-of-use, both achieved by having a more seamless integration between the programming language and the DBMS than that provided with traditional database systems. With a traditional DBMS:

· It is the programmer's responsibility to decide when to read and update objects (records)

· The programmer has to write code to translate between the application's object model and the data model of the DBMS (for example, relations) which might be quite different. With an object-oriented programming language, where an object may be composed of many sub-objects represented by pointers, the translation may be particularly complex. In fact, it has been claimed that a significant amount of programming effort and code space is devoted to this type of mapping, possibly as much as 30% as noted above. if this mapping process can be eliminated or at least reduced, the programmer would be freed from this responsibility, the resulting code would be easier to understand and maintain, and performance may increase as a result.

· It is the programmer's responsibility to perform additional type-checking when an object is read back from the database. For example, the programmer may create an object in the strongly-typed object-oriented language java and store it in a traditional DBMS. However, another application written in a different language may modify the object, with no guarantee that the object will conform to its original type.

These difficulties stem from the fact that conventional DBMS have a two-level storage model: the application storage model in main or virtual memory, and the database storage model on disk, as illustrated in figure (2.1). In contrast, an OODBMS tries to give the illusion of a single-level storage model, with a similar representation in both memory and in the database stored on disk, as illustrated in figure (2.2).

Figure 2.1 Tow Level Storage Model

Figure 2.2 Single-Level Storage Model

Although the single-level memory model looks intuitively simple, to achieve this illusion the OODBMS has to cleverly manage the representations of objects in memory and on disk objects, and relationships between objects, are identified by object identifiers (OIDs). There are tow types of OIDS: logical OIDs that are independent of the physical location of the object on disk, and physical OIDs that encode the location. In the former case, a level of indirection is required to look up the physical address of the object on disk. In both cases, however, an OID different in size from a standard in-memory pointer that need only be large enough to address all virtual memory. Thus, to achieve the required performance, an OODBMS must be able to convert OIDs to end from in memory pointers. This conversion technique has become known as 'pointer swizzling' or 'object faulting', and the approaches used to implement it have become varied, ranging from software-based residency checks to page faulting schemes used by the underlying hardware [7,8].

2.3 Architecture

There are two architecture issues: how best to apply the client-server architecture to the OODBMS environment, and the storage of methods.

2.3.1 Client-server

Many commercial OODBMSs are based on the client-server architecture to provide data to users, applications, and tools in distributed environment. However, not all systems use the same client-server model. There are three basic architectures for a client-server DBMS that vary in the functionality assigned to each component, as depicted in figure (2.3).

· Object server: this approach attempts to distribute the processing between the two components. Typically, the server process is responsible for managing storage, locks, commits to secondary storage, logging and recovery, enforcing security and integrity, query optimization, and executing stored procedures. The client is responsible for transaction management, and interfacing to the programming language. This is the best architecture for cooperative, object-to-object processing in an open, distributed environment.

· Page server: in this approach, most of the database processing is performed by the client. The server is responsible for secondary storage and providing pages at the client's request.

· Database server: in this approach, most of the database processing is performed by the server. The client simply passes requests to the server, receives result, and passes them on to the application. This is the approach taken by many relational DBMSs.

In each case, the server resides on the same machine as the physical database. The client may reside on the same or different machine. If the client needs access to database distributed a cross multiple machines, then the client communicates either a server on each machine. There may also be a number of clients communicating with one server: for example, one client for each user or application [3, 8].

2.3.2 Storing and executing methods

There are two approaches to handling methods: (1) to store the methods in external files, as shown in figure 2.4 (a); and (2) to store the methods in the database, as shown in figure 2.4 (b). The first approach is similar to function libraries or application programming interfaces(APIs) found in traditional DBMSs, in which an application program interface with a DBMS by linking in functions supplied by the DBMS vendor. With the second approach, methods are stored in the database and are dynamically bound to the application at runtime. The second approach offers several benefits:

· It eliminates redundant code Instead of placing a copy of a method that accesses a data element in every program that deals with that data, the method is stored only once in the database.

· It simplifies the modifications of methods which require to be changed into one place only. All the programs automatically use the updated method-Depending on the natural of the change, rebuilding, testing, and redistribution of programs may be eliminated.

· Methods are more secure Storing the methods in the database gives them all the benefits of a security provided automatically by the OODBMS.

· Methods can be shared concurrently Again concurrent access is provided automatically by the OODBMS. This also prevents multiple users making different changes to a method simultaneously.

· Improved integrity Storing the methods in the database means that integrity constraints can be enforced consistently by the OODBMS across all applications [3, 8].

2.4 Integrity

2.4.1 Relationships Integrity

Relationships are presented in an object data model using reference attributes. There are three types of the relationships: one-to-one (1:1), one-to-many (1: M), and many-to-many (M: M).

· 1:1 relationships: A 1:1 relationship between objects A and B is presented by adding a reference attribute to object A and, to maintain referential integrity, a reference attribute to object B.
· 1:M relationships: A 1:M relationship between objects A and B is presented by adding a reference attribute to object B and an attribute containing a set of references to A.

· M:N relationships: A M:N relationship between objects A and B is presented by adding an attribute containing a set of references to each object.

The relational database design decomposes the M:N relationship into two 1:M relationships linked by an intermediate entity [8].

2.4.2 Nulls Integrity

Represent a value for an attribute that is currently unknown or is not applicable for this tuple. A null can be taken to mean the logical value 'unknown'. It can mean that a value is not applicable to a particular tuple, or it could merely mean that no value has yet been supplied. Nulls are a way to deal with incomplete or exceptional data. However, a null is not the same as a zero numeric value or a text string filled with spaces; zeros and spaces are values, but a null represents the absence of a value. Therefore, nulls should be treated differently from other values. Some authors use the term 'null value'. In fact, a null is not a value but represents the absence of a value and so the term 'null value' is deprecated.

Without nulls, it becomes necessary to introduce false data to represent this state or to add additional attributes that may not be meaningful to the user.

Null can cause implementation problem. The difficulty arises because the relational model is based on first-order predicate calculus, which is a tow-valued or Boolean logic- the only values allowed are true or false. Allowing nulls means that we have to work with a higher-valued logic, such as three- or four-valued logic.

2.4.3 Referential Integrity

The existence of relationships gives rise to the need for referential integrity. There are several techniques that can be used to handle referential integrity:

· Do not allow the user to explicitly delete objects. In this case, the system is responsible for 'garbage collection'; in other word, the system automatically deletes objects when they are no longer accessible by the user.

· Allow the user to delete objects when they are no longer required. In this case, the system may detect invalid references automatically and set the reference to NULL (the null pointer) or disallow the deletion. The versant OODBMS uses this approach to enforce referential integrity.

· Allow the user to modify and delete objects and relationships when they are no longer required. In this case, the system automatically maintains the integrity of objects. Inverse attributes can be used to maintain referential integrity [3, 8].

2.4.4 Entity integrity

The first integrity rule applies to the primary keys of base relation. Thus, nowadays, it could be defined as a base relation which is the relation that corresponds to an entity in the conceptual schema.

Entity integrity in a base relation, no attribute of a primary key can be null. By definition, a primary key is a minimal identifier that is used to identify tuples uniquely. This means that no subset of the primary key is sufficient to provide unique identification of tuples. If it allows a null for any part of a primary key, we are implying that not all the attributes are needed to distinguish between tuples, which contradicts the definition of the primary key [8].

2.5 Concurrency Control
ODBMS provide concurrency control mechanisms to ensure that concurrent access to data does not yield inconsistencies in the database or in applications due to invalid assumptions made by seeing partially updated data. The problems of lost updates and uncommitted dependencies are well documented in the database literature. Relational databases solve this problem by providing a transaction mechanism that ensures atomicity and serializability. Atomicity ensures that within a given logical update to the database, either all physical updates are made or none are made. This ensures the database is always in a logically consistent state, with the DB being moved from one consistent state to the next via a transaction. Serializability ensures that running transactions concurrently yield the same result as if they had been run in some serial order. Relational databases typically provide a pessimistic concurrency control mechanism. The pessimistic model allows multiple processes to read data as long as none update it. Updates must be made in isolation, with no other processes reading or updating the data. This concurrency model is sufficient for applications that have short transactions, so that applications are not delayed for long periods due to access conflicts [5, 6].

For applications being targeted by OODBMS (e.g. multi-person design applications), the assumption of short transactions is no longer valid. Optimistic concurrency control mechanisms are based on the assumptions that access conflicts will rarely occur. Under this scenario, all accesses are allowed to proceed and, at transaction commit time, conflicts are resolved. OODBMS have incorporated the idea of optimistic concurrency control mechanisms for building applications that will have long transaction times. Handling of conflicts at commit time cannot simply abort a transaction, however, since one designer may be losing days or weeks of work. OODBMS must provide techniques to allow multiple concurrent updates to the same data and support for merging these intermediate results at an appropriate time (under application control).
An alternative policy is to allow reading and a single update to occur in parallel. Readers are made aware that the data they are reading may be in the midst of an update. Thus readers may be viewing slightly outdated information. Implementation of this approach fits well in the client-server architecture typical of an OODBMS. Each client application gets its own local copy of the data. If an update is made to the data, the server does not permanently store it until all concurrent read transactions are completed. Thus, all read transactions execute seeing a consistent data set, albeit one that is in the process of being updated. Once all readers have completed, the write transaction is allowed to complete modifying the permanent copy of the data. Some OODBMS may, at transaction commit, inform reading clients that the data they just read is in the process of being updated [3, 5, 6].

2.6 Recovery

Recovery is the ability for a database to return to a consistent state after a software or hardware failure. Similar to concurrency, the transaction concept is used to implement recovery and to define the boundaries of recovery activity. One or more forms of database journaling, backup, checkpointing, logging, shadowing, and/or replication are used to identify what needs to be recovered and how to perform a recovery. Databases must typically respond to application failures, system failures, and media failures. Application failures are typically trapped by the transaction mechanism and recovery is implemented by rolling back the transaction. System failures, such as loss of power, may require log and/or checkpoint supported rollback of uncommitted transactions and roll forward of transactions that were committed but not completely flushed to disk. Media failures, such as a disk head crash, require restoration of the database from a backup version, and replaying of transactions that have been committed since the backup.

The ability of a database to recover from failures results in a heavy processing and storage overhead. In the process of evaluating an OODBMS, its ability to recover from faults, and the overhead incurred to provide that recovery capability, must be carefully considered Applications envisioned for OODBMS often do not have the same strict recovery requirements as do relational database applications (e.g. banking systems). In addition, the amount of data stored in such systems may result in unacceptable storage overheads for many forms of recovery. For these reasons, an OODBMS evaluation effort must carefully select the recovery capabilities needed based on both the functional and performance requirements of the application [3, 5, 6].

2.7 Transactions
Transactions are the mechanism used to implement concurrency and recovery. Different transaction policies have been described in Section 2.5, Concurrency, under the topics of pessimistic, optimistic, and multiple readers/single write concurrency control policies. Within a transaction, data from anywhere in the (distributed) database must be accessible. A feature found in many OODBMS products is to commit a transaction but to allow the objects to remain in the client cache under the expectation that they will soon be referenced again.

Some OODBMS have incorporated the concept of long and/or nested transactions. A long transaction allows transactions to last for hours or days without the possibility of system generated aborts (due to lock conflicts for example). System generated aborts must be avoided for applications targeting OODBMS since a few hours or days of work cannot be simply discarded. Long transactions may be composed of nested transactions for purposes of recovery [5, 6].

2.8 Persistence

Persistence is the characteristic that makes data available across executions. The objective of an OODBMS is to make objects persistent. Persistence may be based on an object's class, meaning that all objects of a given class are persistent. Each object of a persistent class is automatically made persistent. An alternative model is that persistence is a unique characteristic of each object (i.e., it is orthogonal to class). Under this model, an object's persistence is normally specified when it is created. A third persistence model is that any object reachable from a persistent object is also persistent. Such systems require some way of explicitly stating that a given object is persistent (as a means of starting the network of inter-connected persistent objects) [2, 3, 5].

2.9 Security

Secure OODBMSs protect their data from malicious misuse. Security requirements are similar to data integrity requirements that protect data from accidental misuse. Secure databases typically provide a multi-level security model where users and data are categorized with a specific security level. Mandatory security controls ensure that users can access data only at their level and below. Discretionary security controls provide access control based on explicit authorization of a user's access to data. Applications targeted by OODBMS often do not require strict security controls, although discretionary access controls seem desirable for work-group design type applications [3, 5].

2.10 Summary

There are two architecture of OODBMS environment, the client-server architecture, and the storage of methods.

Relationships are presented in an object data model using reference attributes. There exist several kinds of integrity such as relationships integrity, nulls integrity, referential integrity, and entity integrity. ODBMS provide some mechanisms, such as integrity, concurrency control, recovery, transactions, persistence, and security.

Secondary Storage

SQL

Transformation and Type Checking

Main or Virtual Memory

Secondary Storage

Main or Virtual Memory

Figure 2.3 Client-server architectures:

 (a) object server (b) page server (c) database server.

Objects Store

Application

Object Manager

Object Server

Requests

Objects

Objects Store

Application

DB Manager

Object Server

Addresses

Pages

Objects Store

Application

Comms

Object Server

SQL

Tables

Objects Store

Application

Object Manager

Object Server

Requests

Objects

File 1

Objects Store

Application

Object Manager

Object Server

Request

Objects

File 2

File 3

Figure 2.4 Strategies for handling method:

 (a) Storing method outside database; (b) Storing method in database.

a)

b)

c)

a)

b)

Data Base Storage On Disk

PAGE
17

